MathDB
Problems
Contests
Undergraduate contests
Miklós Schweitzer
1955 Miklós Schweitzer
1
1
Part of
1955 Miklós Schweitzer
Problems
(1)
Miklós Schweitzer 1955- Problem 1
Source:
9/30/2015
1. Let
a
1
,
a
2
,
…
,
a
n
a_{1}, a_{2}, \dots , a_{n}
a
1
,
a
2
,
…
,
a
n
and
b
1
,
b
2
,
…
,
b
m
b_{1}, b_{2}, \dots , b_{m}
b
1
,
b
2
,
…
,
b
m
be
n
+
m
n+m
n
+
m
unit vectors in the
r
r
r
-dimensional Euclidean space
E
r
(
n
,
m
≤
r
)
E_{r} (n,m \leq r)
E
r
(
n
,
m
≤
r
)
; let
a
1
,
a
2
,
…
,
a
n
a_{1}, a_{2}, \dots , a_{n}
a
1
,
a
2
,
…
,
a
n
as well as
b
1
,
b
2
,
…
,
b
m
b_{1}, b_{2}, \dots , b_{m}
b
1
,
b
2
,
…
,
b
m
be mutually orthogonal. For any vector
x
∈
E
r
x \in E_{r}
x
∈
E
r
, consider
T
x
=
∑
i
=
1
n
∑
k
=
1
m
(
x
,
a
i
)
(
a
i
,
b
k
)
b
k
Tx= \sum_{i=1}^{n}\sum_{k=1}^{m}(x,a_{i})(a_{i},b_{k})b_{k}
T
x
=
∑
i
=
1
n
∑
k
=
1
m
(
x
,
a
i
)
(
a
i
,
b
k
)
b
k
(
(
a
,
b
)
(a,b)
(
a
,
b
)
denotes the scalar product of
a
a
a
and
b
b
b
). Show that the sequence
(
T
k
x
)
k
=
0
∞
(T^{k}x)^{\infty}_{ k =0}
(
T
k
x
)
k
=
0
∞
, where
T
0
x
=
x
T^{0} x= x
T
0
x
=
x
and
T
k
x
=
T
(
T
k
−
1
x
)
T^{k} x = T(T^{k-1}x)
T
k
x
=
T
(
T
k
−
1
x
)
, is convergent and give a geometrical characterization of how the limit depends on
x
x
x
. (S. 14)
vector
college contests