1
Part of 1950 Miklós Schweitzer
Problems(2)
Miklos Schweitzer 1950_1
Source: first round of 1950
10/2/2008
Let \{k_n\}_{n \equal{} 1}^{\infty} be a sequence of real numbers having the properties and k_1 \plus{} k_2 \plus{} \cdots \plus{} k_n < 2k_n for n \equal{} 1,2,.... Prove that there exists a number such that for every positive integer .
algebra proposedalgebra
Miklos Schweitzer 1950_1
Source: second part of 1950
10/2/2008
Let , and put
f(x)\equal{}\frac{1}{a}\plus{}\frac{x}{a(a\plus{}d)}\plus{}\cdots\plus{}\frac{x^n}{a(a\plus{}d)\cdots(a\plus{}nd)}\plus{}\cdots
Give a closed form for .
real analysisreal analysis unsolved