Let uk, vk, ak and bk be non-negative real sequences such as uk>ak and vk>bk, where k=1,2,⋯,n. If 0<m1≤uk≤M1 and 0<m2≤vk≤M2, then k=1∑n(lukvk−akbk)≥(k=1∑n(uk2−ak2))21(k=1∑n(vk2−bk2))21wherel=2m1M1m2M2M1M2+m1m2 SummationSequencesinequalities