Let V be a n−dimensional vector space over a field F with a basis {e1,e2,⋯,en}.Prove that for any m−dimensional linear subspace W of V, the number of elements of the set W∩P is less than or equal to 2m where P={λ1e1+λ2e2+⋯+λnen:λi=0,1}. vectorgeometrygeometric transformationgroup theoryabstract algebralinear algebralinear algebra unsolved