MathDB
Problems
Contests
Undergraduate contests
IMC
2022 IMC
7
7
Part of
2022 IMC
Problems
(1)
Idempotent theoretical problem
Source: IMC 2022 Day 2 Problem 7
8/5/2022
Let
A
1
,
…
,
A
k
A_1, \ldots, A_k
A
1
,
…
,
A
k
be
n
×
n
n\times n
n
×
n
idempotent complex matrices such that
A
i
A
j
=
−
A
i
A
j
A_iA_j = -A_iA_j
A
i
A
j
=
−
A
i
A
j
for all
1
≤
i
<
j
≤
k
1 \leq i < j \leq k
1
≤
i
<
j
≤
k
. Prove that at least one of the matrices has rank not exceeding
n
k
\frac{n}{k}
k
n
.
linear algebra
idempotence
rank
IMC 2022