Define the sequence A1,A2,… of matrices by the following recurrence: A_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ \end{pmatrix}, A_{n+1} = \begin{pmatrix} A_n & I_{2^n} \\ I_{2^n} & A_n \\ \end{pmatrix} (n=1,2,\ldots) where Im is the m×m identity matrix.Prove that An has n+1 distinct integer eigenvalues λ0<λ1<…<λn with multiplicities (0n),(1n),…,(nn), respectively. college contestsimc 2017IMClinear algebra