Problems(1)
Let α>1 and consider the function f(x)=xα for x≥0. For t>0, define M(t) as the largest area that a triangle with vertices (0,0),(s,f(s)),(t,f(t)) could reach, for s∈(0,t). Let A(t) be the area of the region bounded by the segment with endpoints (0,0) ,(t,f(t)) and the graph of y=f(x).
(a) Show that A(t)/M(t) does not depend on t. We denote this value by c(α). Find c(α).
(b) Determine the range of values of c(α) when α varies in the interval (1,+∞).Google translated from [url=http://ciim.uan.edu.co/ciim-2020-pruebas-virtuales/pruebas-virtuales]http://ciim.uan.edu.co/ciim-2020-pruebas-virtuales/pruebas-virtuales
analytic geometryalgebra