MathDB
Problems
Contests
Undergraduate contests
CIIM
2013 CIIM
Problem 2
Problem 2
Part of
2013 CIIM
Problems
(1)
CIIM 2013 Problem 2
Source:
8/8/2016
Consider a polinomial
p
∈
R
[
x
]
p \in \mathbb{R}[x]
p
∈
R
[
x
]
of degree
n
n
n
and with no real roots. Prove that
∫
−
∞
∞
(
p
′
(
x
)
)
2
(
p
(
x
)
)
2
+
(
p
′
(
x
)
)
2
d
x
\int_{-\infty}^{\infty}\frac{(p'(x))^2}{(p(x))^2+(p'(x))^2}dx
∫
−
∞
∞
(
p
(
x
)
)
2
+
(
p
′
(
x
)
)
2
(
p
′
(
x
)
)
2
d
x
converges, and is less or equal than
n
3
/
2
π
.
n^{3/2}\pi.
n
3/2
π
.
CIIM 2013
CIIM
undergraduate