Let an=(n2n)1,∀n≤1.a) Show that n=1∑+∞anxn converges for all x∈(−4,4) and that the function f(x)=n=1∑+∞anxn satisfies the differential equation x(x−4)f′(x)+(x+2)f(x)=−x.b) Prove that n=1∑+∞(n2n)1=31+272π3. functionreal analysisConvergencebinomial coefficients