MathDB
Problems
Contests
Undergraduate contests
Brazil Undergrad MO
2005 Brazil Undergrad MO
6
6
Part of
2005 Brazil Undergrad MO
Problems
(1)
Lots of nonsingular matrices
Source: Brazilian Math Olympiad 2005 Undergrad problem 5
10/24/2005
Prove that for any natural numbers
0
≤
i
1
<
i
2
<
⋯
<
i
k
0 \leq i_1 < i_2 < \cdots < i_k
0
≤
i
1
<
i
2
<
⋯
<
i
k
and
0
≤
j
1
<
j
2
<
⋯
<
j
k
0 \leq j_1 < j_2 < \cdots < j_k
0
≤
j
1
<
j
2
<
⋯
<
j
k
, the matrix
A
=
(
a
r
s
)
1
≤
r
,
s
≤
k
A = (a_{rs})_{1\leq r,s\leq k}
A
=
(
a
rs
)
1
≤
r
,
s
≤
k
,
a
r
s
=
(
i
r
+
j
s
i
r
)
=
(
i
r
+
j
s
)
!
i
r
!
j
s
!
a_{rs} = {i_r + j_s\choose i_r} = {(i_r + j_s)!\over i_r!\, j_s!}
a
rs
=
(
i
r
i
r
+
j
s
)
=
i
r
!
j
s
!
(
i
r
+
j
s
)!
(
1
≤
r
,
s
≤
k
1\leq r,s\leq k
1
≤
r
,
s
≤
k
) is nonsingular.
linear algebra
matrix
calculus
integration
MIT
college