Let f(x,y) be a function from ordered pairs of positive integers to real numbers
such that
f(1,x) = f(x,1) = \frac{1}{x} \text{and} f(x+1,y+1)f(x,y)-f(x,y+1)f(x+1,y) = 1
for all ordered pairs of positive integers (x,y). If f(100,100)=nmā for two relatively prime positive integers m,n, compute m+n.David Yang Online Math Openfunctionnumber theoryrelatively primeabstract algebra