Problems(1)
A point object of mass m is connected to a cylinder of radius R via a massless rope. At time t=0 the object is moving with an initial velocity v0 perpendicular to the rope, the rope has a length L0, and the rope has a non-zero tension. All motion occurs on a horizontal frictionless surface. The cylinder remains stationary on the surface and does not rotate. The object moves in such a way that the rope slowly winds up around the cylinder. The rope will break when the tension exceeds Tmax. Express your answers in terms of Tmax, m, L0, R, and v0. [asy]
size(200);
real L=6;
filldraw(CR((0,0),1),gray(0.7),black);
path P=nullpath;
for(int t=0;t<370;++t)
{
pair X=dir(180-t)+(L-t/180)*dir(90-t);
if(X.y>L) X=(X.x,L);
P=P--X;
}
draw(P,dashed,EndArrow(size=7));
draw((-1,0)--(-1,L)--(2,L),EndArrow(size=7));
filldraw(CR((-1,L),0.25),gray(0.7),black);[/asy]What is the length (not yet wound) of the rope?<spanclass=′latex−bold′>(A)</span> L0−πR<spanclass=′latex−bold′>(B)</span> L0−2πR<spanclass=′latex−bold′>(C)</span> L0−18πR<spanclass=′latex−bold′>(D)</span> Tmaxmv02<spanclass=′latex−bold′>(E)</span> none of the above