MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - College-Hosted Events
Princeton University Math Competition
2020 Princeton University Math Competition
A3
A3
Part of
2020 Princeton University Math Competition
Problems
(1)
2020 PUMaC Individual Finals A3
Source:
1/1/2022
Let
n
n
n
be a positive integer, and let
F
F
F
be a family of subsets of
{
1
,
2
,
.
.
.
,
2
n
}
\{1, 2, ... , 2^n\}
{
1
,
2
,
...
,
2
n
}
such that for any non-empty
A
∈
F
A\in F
A
∈
F
there exists
B
∈
F
B \in F
B
∈
F
so that
∣
A
∣
=
∣
B
∣
+
1
|A| = |B| + 1
∣
A
∣
=
∣
B
∣
+
1
and
B
⊂
A
B \subset A
B
⊂
A
. Suppose that F contains all
(
2
n
−
1
)
(2^n - 1)
(
2
n
−
1
)
-element subsets of
{
1
,
2
,
.
.
.
,
2
n
}
\{1, 2, ... , 2^n\}
{
1
,
2
,
...
,
2
n
}
Determine the minimal possible value of
∣
F
∣
|F|
∣
F
∣
.
combinatorics