MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - College-Hosted Events
Princeton University Math Competition
2011 Princeton University Math Competition
A2
A2
Part of
2011 Princeton University Math Competition
Problems
(2)
2011 PUMaC Algebra A2
Source:
9/24/2019
A function
S
(
m
,
n
)
S(m, n)
S
(
m
,
n
)
satisfies the initial conditions
S
(
1
,
n
)
=
n
S(1, n) = n
S
(
1
,
n
)
=
n
,
S
(
m
,
1
)
=
1
S(m, 1) = 1
S
(
m
,
1
)
=
1
, and the recurrence
S
(
m
,
n
)
=
S
(
m
−
1
,
n
)
S
(
m
,
n
−
1
)
S(m, n) = S(m - 1, n)S(m, n - 1)
S
(
m
,
n
)
=
S
(
m
−
1
,
n
)
S
(
m
,
n
−
1
)
for
m
≥
2
,
n
≥
2
m\geq 2, n\geq 2
m
≥
2
,
n
≥
2
. Find the largest integer
k
k
k
such that
2
k
2^k
2
k
divides
S
(
7
,
7
)
S(7, 7)
S
(
7
,
7
)
.
algebra
2011 PUMaC Individual Finals A2
Source:
9/24/2019
Define the sequence of real numbers
{
x
n
}
n
≥
1
\{x_n\}_{n \geq 1}
{
x
n
}
n
≥
1
, where
x
1
x_1
x
1
is any real number and
x
n
=
1
−
x
1
x
2
…
x
n
−
1
for all
n
>
1.
x_n = 1 - x_1x_2\ldots x_{n-1} \text{ for all } n > 1.
x
n
=
1
−
x
1
x
2
…
x
n
−
1
for all
n
>
1.
Show that
x
2011
>
2011
2012
x_{2011} > \frac{2011}{2012}
x
2011
>
2012
2011
.
algebra