MathDB

Problems(4)

Stewart (2023 HMMT February Geo #8)

Source:

2/20/2023
Let ABC\triangle ABC be a triangle with BAC>90\angle BAC>90^{\circ}, AB=5AB=5 and AC=7AC=7. Points DD and EE lie on segment BCBC such that BD=DE=ECBD=DE=EC. If BAC+DAE=180\angle BAC+\angle DAE=180^{\circ}, compute BCBC.
HMMT
HMMT Feb 2023 team p8

Source:

2/20/2023
Find, with proof, all nonconstant polynomials P(x)P(x) with real coefficients such that, for all nonzero real numbers zz with P(z)0P(z)\neq 0 and P(1z)0P(\frac{1}{z}) \neq 0 we have 1P(z)+1P(1z)=z+1z.\frac{1}{P(z)}+\frac{1}{P(\frac{1} {z})}=z+\frac{1}{z}.
2023 Combinatorics #8

Source:

2/28/2024
A random permutation a=(a1,a2,...,a40)a = (a_1, a_2,...,a_{40}) of (1,2,...,40)(1, 2,...,40) is chosen, with all permutations being equally likely. William writes down a 20×2020 \times 20 grid of numbers bijb_{ij} such that bij=max(ai,aj+20)b_{ij} = \max (a_i, a_{j+20}) for all 1i,j201 \le i, j \le 20, but then forgets the original permutation aa. Compute the probability that, given the values of bijb_{ij} alone, there are exactly 22 permutations aa consistent with the grid.
combinatorics
2023 Algebra/NT #8: Clean bijective NT sum

Source:

11/27/2023
Let SS be the set of ordered pairs (a,b)(a, b) of positive integers such that gcd(a,b)=1\gcd(a, b) = 1. Compute (a,b)S3002a+3b. \sum_{(a, b) \in S} \left\lfloor \frac{300}{2a+3b} \right\rfloor.
floor functionnumber theory