MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - College-Hosted Events
Harvard-MIT Mathematics Tournament
2016 Harvard-MIT Mathematics Tournament
36
36
Part of
2016 Harvard-MIT Mathematics Tournament
Problems
(1)
2016 Guts #36
Source:
12/24/2016
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
S
e
l
f
−
I
s
o
g
o
n
a
l
C
u
b
i
c
s
)
<
/
s
p
a
n
>
<span class='latex-bold'>(Self-Isogonal Cubics)</span>
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
S
e
l
f
−
I
so
g
o
na
lC
u
bi
cs
)
<
/
s
p
an
>
Let
A
B
C
ABC
A
BC
be a triangle with
A
B
=
2
AB = 2
A
B
=
2
,
A
C
=
3
AC = 3
A
C
=
3
,
B
C
=
4
BC = 4
BC
=
4
. The \emph{isogonal conjugate} of a point
P
P
P
, denoted
P
∗
P^\ast
P
∗
, is the point obtained by intersecting the reflection of lines
P
A
PA
P
A
,
P
B
PB
PB
,
P
C
PC
PC
across the angle bisectors of
∠
A
\angle A
∠
A
,
∠
B
\angle B
∠
B
, and
∠
C
\angle C
∠
C
, respectively.Given a point
Q
Q
Q
, let
K
(
Q
)
\mathfrak K(Q)
K
(
Q
)
denote the unique cubic plane curve which passes through all points
P
P
P
such that line
P
P
∗
PP^\ast
P
P
∗
contains
Q
Q
Q
. Consider:[*] the M'Cay cubic
K
(
O
)
\mathfrak K(O)
K
(
O
)
, where
O
O
O
is the circumcenter of
△
A
B
C
\triangle ABC
△
A
BC
, [*] the Thomson cubic
K
(
G
)
\mathfrak K(G)
K
(
G
)
, where
G
G
G
is the centroid of
△
A
B
C
\triangle ABC
△
A
BC
, [*] the Napoleon-Feurerbach cubic
K
(
N
)
\mathfrak K(N)
K
(
N
)
, where
N
N
N
is the nine-point center of
△
A
B
C
\triangle ABC
△
A
BC
, [*] the Darboux cubic
K
(
L
)
\mathfrak K(L)
K
(
L
)
, where
L
L
L
is the de Longchamps point (the reflection of the orthocenter across point
O
O
O
), [*] the Neuberg cubic
K
(
X
30
)
\mathfrak K(X_{30})
K
(
X
30
)
, where
X
30
X_{30}
X
30
is the point at infinity along line
O
G
OG
OG
, [*] the nine-point circle of
△
A
B
C
\triangle ABC
△
A
BC
, [*] the incircle of
△
A
B
C
\triangle ABC
△
A
BC
, and [*] the circumcircle of
△
A
B
C
\triangle ABC
△
A
BC
.Estimate
N
N
N
, the number of points lying on at least two of these eight curves. An estimate of
E
E
E
earns
⌊
20
⋅
2
−
∣
N
−
E
∣
/
6
⌋
\left\lfloor 20 \cdot 2^{-|N-E|/6} \right\rfloor
⌊
20
⋅
2
−
∣
N
−
E
∣/6
⌋
points.