MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - College-Hosted Events
CMIMC Problems
2020 CMIMC
2020 CMIMC Geometry
Estimation
Estimation
Part of
2020 CMIMC Geometry
Problems
(1)
2020 Geometry: Estimation
Source:
2/2/2020
Gunmay picks
6
6
6
points uniformly at random in the unit square. If
p
p
p
is the probability that their convex hull is a hexagon, estimate
p
p
p
in the form
0.
a
b
c
d
e
f
0.abcdef
0.
ab
c
d
e
f
where
a
,
b
,
c
,
d
,
e
,
f
a,b,c,d,e,f
a
,
b
,
c
,
d
,
e
,
f
are decimal digits. (A convex combination of points
x
1
,
x
2
,
…
,
x
n
x_1, x_2, \dots, x_n
x
1
,
x
2
,
…
,
x
n
is a point of the form
α
1
x
1
+
α
2
x
2
+
⋯
+
α
n
x
n
\alpha_1x_1 + \alpha_2x_2 + \dots + \alpha_nx_n
α
1
x
1
+
α
2
x
2
+
⋯
+
α
n
x
n
with
0
≤
α
i
≤
1
0 \leq \alpha_i \leq 1
0
≤
α
i
≤
1
for all
i
i
i
and
α
1
+
α
2
+
⋯
+
α
n
=
1
\alpha_1 + \alpha_2 + \dots + \alpha_n = 1
α
1
+
α
2
+
⋯
+
α
n
=
1
. The convex hull of a set of points
X
X
X
is the set of all possible convex combinations of all subsets of
X
X
X
.)
geometry
2020
estimation