MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - College-Hosted Events
CMIMC Problems
2017 CMIMC
2017 CMIMC Team
7
7
Part of
2017 CMIMC Team
Problems
(1)
2017 T7: Rational Approximation of sqrt(2)
Source:
1/29/2017
Define
{
p
n
}
n
=
0
∞
⊂
N
\{p_n\}_{n=0}^\infty\subset\mathbb N
{
p
n
}
n
=
0
∞
⊂
N
and
{
q
n
}
n
=
0
∞
⊂
N
\{q_n\}_{n=0}^\infty\subset\mathbb N
{
q
n
}
n
=
0
∞
⊂
N
to be sequences of natural numbers as follows:[*]
p
0
=
q
0
=
1
p_0=q_0=1
p
0
=
q
0
=
1
; [*]For all
n
∈
N
n\in\mathbb N
n
∈
N
,
q
n
q_n
q
n
is the smallest natural number such that there exists a natural number
p
n
p_n
p
n
with
gcd
(
p
n
,
q
n
)
=
1
\gcd(p_n,q_n)=1
g
cd
(
p
n
,
q
n
)
=
1
satisfying
p
n
−
1
q
n
−
1
<
p
n
q
n
<
2
.
\dfrac{p_{n-1}}{q_{n-1}} < \dfrac{p_n}{q_n} < \sqrt 2.
q
n
−
1
p
n
−
1
<
q
n
p
n
<
2
.
Find
q
3
q_3
q
3
.
2017
team