MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - College-Hosted Events
CHMMC problems
2018 CHMMC (Fall)
3
3
Part of
2018 CHMMC (Fall)
Problems
(2)
2018 Fall Team #3
Source:
4/17/2022
Let
p
p
p
be the third-smallest prime number greater than
5
5
5
such that:
∙
\bullet
∙
2
p
+
1
2p + 1
2
p
+
1
is prime, and
∙
\bullet
∙
5
p
≢
1
5^p \not\equiv 1
5
p
≡
1
(mod
2
p
+
1
2p + 1
2
p
+
1
). Find
p
p
p
.
number theory
2018 CHMMC Tiebreaker 3 - sum ( 1/(n^2 + 3n) - 1/(n^2 + 3n + 2) )
Source:
3/2/2024
Compute
∑
n
=
1
∞
(
1
n
2
+
3
n
−
1
n
2
+
3
n
+
2
)
\sum^{\infty}_{n=1} \left( \frac{1}{n^2 + 3n} - \frac{1}{n^2 + 3n + 2}\right)
n
=
1
∑
∞
(
n
2
+
3
n
1
−
n
2
+
3
n
+
2
1
)
algebra
Sum
CHMMC