Let ABC be an acute, scalene triangle, and let M, N, and P be the midpoints of BC, CA, and AB, respectively. Let the perpendicular bisectors of AB and AC intersect ray AM in points D and E respectively, and let lines BD and CE intersect in point F, inside of triangle ABC. Prove that points A, N, F, and P all lie on one circle. geometrycircumcirclegeometric transformationhomothetygeometry solvedsymmedianAngle Chasing