MathDB
Problems
Contests
National and Regional Contests
USA Contests
MAA AMC
USAMO
1994 USAMO
1
1
Part of
1994 USAMO
Problems
(1)
Classic algebra problem
Source: USAMO1994
8/22/2005
Let
k
1
<
k
2
<
k
3
<
⋯
\, k_1 < k_2 < k_3 < \cdots \,
k
1
<
k
2
<
k
3
<
⋯
be positive integers, no two consecutive, and let
s
m
=
k
1
+
k
2
+
⋯
+
k
m
\, s_m = k_1 + k_2 + \cdots + k_m \,
s
m
=
k
1
+
k
2
+
⋯
+
k
m
for
m
=
1
,
2
,
3
,
…
\, m = 1,2,3, \ldots \; \;
m
=
1
,
2
,
3
,
…
. Prove that, for each positive integer
n
,
\, n, \,
n
,
the interval
[
s
n
,
s
n
+
1
)
\, [s_n, s_{n+1}) \,
[
s
n
,
s
n
+
1
)
contains at least one perfect square.
LaTeX
number theory unsolved
number theory