MathDB
Problems
Contests
National and Regional Contests
USA Contests
MAA AMC
USAMO
1977 USAMO
2
2
Part of
1977 USAMO
Problems
(1)
Weird Area Identity
Source: 1977 USAMO Problem 2
4/4/2010
A
B
C
ABC
A
BC
and
A
′
B
′
C
′
A'B'C'
A
′
B
′
C
′
are two triangles in the same plane such that the lines
A
A
′
,
B
B
′
,
C
C
′
AA',BB',CC'
A
A
′
,
B
B
′
,
C
C
′
are mutually parallel. Let
[
A
B
C
]
[ABC]
[
A
BC
]
denotes the area of triangle
A
B
C
ABC
A
BC
with an appropriate
±
\pm
±
sign, etc.; prove that 3([ABC] \plus{} [A'B'C']) \equal{} [AB'C'] \plus{} [BC'A'] \plus{} [CA'B'] \plus{} [A'BC] \plus{} [B'CA] \plus{} [C'AB].
geometry
vector