MathDB

2022 USAJMO

Part of USAJMO

Subcontests

(6)
3
1

construct regular heptadecagon PLEASETELLMEYOUARENOTDRAWINGTHIS

Let b2b\geq2 and w2w\geq2 be fixed integers, and n=b+wn=b+w. Given are 2b2b identical black rods and 2w2w identical white rods, each of side length 1.
We assemble a regular 2n2n-gon using these rods so that parallel sides are the same color. Then, a convex 2b2b-gon BB is formed by translating the black rods, and a convex 2w2w-gon WW is formed by translating the white rods. An example of one way of doing the assembly when b=3b=3 and w=2w=2 is shown below, as well as the resulting polygons BB and WW.
[asy]size(10cm); real w = 2*Sin(18); real h = 0.10 * w; real d = 0.33 * h; picture wht; picture blk;
draw(wht, (0,0)--(w,0)--(w+d,h)--(-d,h)--cycle); fill(blk, (0,0)--(w,0)--(w+d,h)--(-d,h)--cycle, black);
// draw(unitcircle, blue+dotted);
// Original polygon add(shift(dir(108))*blk); add(shift(dir(72))*rotate(324)*blk); add(shift(dir(36))*rotate(288)*wht); add(shift(dir(0))*rotate(252)*blk); add(shift(dir(324))*rotate(216)*wht);
add(shift(dir(288))*rotate(180)*blk); add(shift(dir(252))*rotate(144)*blk); add(shift(dir(216))*rotate(108)*wht); add(shift(dir(180))*rotate(72)*blk); add(shift(dir(144))*rotate(36)*wht);
// White shifted real Wk = 1.2; pair W1 = (1.8,0.1); pair W2 = W1 + w*dir(36); pair W3 = W2 + w*dir(108); pair W4 = W3 + w*dir(216); path Wgon = W1--W2--W3--W4--cycle; draw(Wgon); pair WO = (W1+W3)/2; transform Wt = shift(WO)*scale(Wk)*shift(-WO); draw(Wt * Wgon); label("WW", WO); /* draw(W1--Wt*W1); draw(W2--Wt*W2); draw(W3--Wt*W3); draw(W4--Wt*W4); */
// Black shifted real Bk = 1.10; pair B1 = (1.5,-0.1); pair B2 = B1 + w*dir(0); pair B3 = B2 + w*dir(324); pair B4 = B3 + w*dir(252); pair B5 = B4 + w*dir(180); pair B6 = B5 + w*dir(144); path Bgon = B1--B2--B3--B4--B5--B6--cycle; pair BO = (B1+B4)/2; transform Bt = shift(BO)*scale(Bk)*shift(-BO); fill(Bt * Bgon, black); fill(Bgon, white); label("BB", BO);[/asy]
Prove that the difference of the areas of BB and WW depends only on the numbers bb and ww, and not on how the 2n2n-gon was assembled.
Proposed by Ankan Bhattacharya