MathDB

2013 AMC 8

Part of AMC 8

Subcontests

(25)

2013/8/18/Box with cover sliced off

Isabella uses one-foot cubical blocks to build a rectangular fort that is 12 feet long, 10 feet wide, and 5 feet high. The floor and the four walls are all one foot thick. How many blocks does the fort contain? [asy] import three; size(3inch); currentprojection=orthographic(-8,15,15); triple A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P; A = (0,0,0); B = (0,10,0); C = (12,10,0); D = (12,0,0); E = (0,0,5); F = (0,10,5); G = (12,10,5); H = (12,0,5); I = (1,1,1); J = (1,9,1); K = (11,9,1); L = (11,1,1); M = (1,1,5); N = (1,9,5); O = (11,9,5); P = (11,1,5); //outside box far draw(surface(A--B--C--D--cycle),white,nolight); draw(A--B--C--D--cycle); draw(surface(E--A--D--H--cycle),white,nolight); draw(E--A--D--H--cycle); draw(surface(D--C--G--H--cycle),white,nolight); draw(D--C--G--H--cycle); //inside box far draw(surface(I--J--K--L--cycle),white,nolight); draw(I--J--K--L--cycle); draw(surface(I--L--P--M--cycle),white,nolight); draw(I--L--P--M--cycle); draw(surface(L--K--O--P--cycle),white,nolight); draw(L--K--O--P--cycle); //inside box near draw(surface(I--J--N--M--cycle),white,nolight); draw(I--J--N--M--cycle); draw(surface(J--K--O--N--cycle),white,nolight); draw(J--K--O--N--cycle); //outside box near draw(surface(A--B--F--E--cycle),white,nolight); draw(A--B--F--E--cycle); draw(surface(B--C--G--F--cycle),white,nolight); draw(B--C--G--F--cycle); //top draw(surface(E--H--P--M--cycle),white,nolight); draw(surface(E--M--N--F--cycle),white,nolight); draw(surface(F--N--O--G--cycle),white,nolight); draw(surface(O--G--H--P--cycle),white,nolight); draw(M--N--O--P--cycle); draw(E--F--G--H--cycle); label("10",(A--B),SE); label("12",(C--B),SW); label("5",(F--B),W);[/asy] <spanclass=latexbold>(A)</span> 204<spanclass=latexbold>(B)</span> 280<spanclass=latexbold>(C)</span> 320<spanclass=latexbold>(D)</span> 340<spanclass=latexbold>(E)</span> 600<span class='latex-bold'>(A)</span>\ 204 \qquad <span class='latex-bold'>(B)</span>\ 280 \qquad <span class='latex-bold'>(C)</span>\ 320 \qquad <span class='latex-bold'>(D)</span>\ 340 \qquad <span class='latex-bold'>(E)</span>\ 600

2013/8/25/Rolling on a semicircle

A ball with diameter 4 inches starts at point A to roll along the track shown. The track is comprised of 3 semicircular arcs whose radii are R1=100R_1 = 100 inches, R2=60R_2 = 60 inches, and R3=80R_3 = 80 inches, respectively. The ball always remains in contact with the track and does not slip. What is the distance the center of the ball travels over the course from A to B? [asy] size(8cm); draw((0,0)--(480,0),linetype("3 4")); filldraw(circle((8,0),8),black); draw((0,0)..(100,-100)..(200,0)); draw((200,0)..(260,60)..(320,0)); draw((320,0)..(400,-80)..(480,0)); draw((100,0)--(150,-50sqrt(3)),Arrow(size=4)); draw((260,0)--(290,30sqrt(3)),Arrow(size=4)); draw((400,0)--(440,-40sqrt(3)),Arrow(size=4)); label("R1R_1",(100,0)--(150,-50sqrt(3)), W, fontsize(10)); label("R2R_2",(260,0)--(290,30sqrt(3)), W, fontsize(10)); label("R3R_3",(400,0)--(440,-40sqrt(3)), W, fontsize(10)); filldraw(circle((8,0),8),black); label("AA",(0,0),W,fontsize(10));[/asy]
<spanclass=latexbold>(A)</span> 238π<spanclass=latexbold>(B)</span> 240π<spanclass=latexbold>(C)</span> 260π<spanclass=latexbold>(D)</span> 280π<spanclass=latexbold>(E)</span> 500π<span class='latex-bold'>(A)</span>\ 238\pi \qquad <span class='latex-bold'>(B)</span>\ 240\pi \qquad <span class='latex-bold'>(C)</span>\ 260\pi \qquad <span class='latex-bold'>(D)</span>\ 280\pi \qquad <span class='latex-bold'>(E)</span>\ 500\pi