MathDB

2011 AMC 8

Part of AMC 8

Subcontests

(25)
9
1

2011 AMC 8 - Problem 9 - Carmen riding a bike

Carmen takes a long bike ride on a hilly highway. The graph indicates the miles traveled during the time of her ride. What is Carmen's average speed for her entire ride in miles per hour?
[asy] import graph; size(8.76cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-3.58,xmax=10.19,ymin=-4.43,ymax=9.63; draw((0,0)--(0,8)); draw((0,0)--(8,0)); draw((0,1)--(8,1)); draw((0,2)--(8,2)); draw((0,3)--(8,3)); draw((0,4)--(8,4)); draw((0,5)--(8,5)); draw((0,6)--(8,6)); draw((0,7)--(8,7)); draw((1,0)--(1,8)); draw((2,0)--(2,8)); draw((3,0)--(3,8)); draw((4,0)--(4,8)); draw((5,0)--(5,8)); draw((6,0)--(6,8)); draw((7,0)--(7,8)); label("11",(0.95,-0.24),SE*lsf); label("22",(1.92,-0.26),SE*lsf); label("33",(2.92,-0.31),SE*lsf); label("44",(3.93,-0.26),SE*lsf); label("55",(4.92,-0.27),SE*lsf); label("66",(5.95,-0.29),SE*lsf); label("77",(6.94,-0.27),SE*lsf); label("55",(-0.49,1.22),SE*lsf); label("1010",(-0.59,2.23),SE*lsf); label("1515",(-0.61,3.22),SE*lsf); label("2020",(-0.61,4.23),SE*lsf); label("2525",(-0.59,5.22),SE*lsf); label("3030",(-0.59,6.2),SE*lsf); label("3535",(-0.56,7.18),SE*lsf); draw((0,0)--(1,1),linewidth(1.6)); draw((1,1)--(2,3),linewidth(1.6)); draw((2,3)--(4,4),linewidth(1.6)); draw((4,4)--(7,7),linewidth(1.6)); label("HOURS",(3.41,-0.85),SE*lsf); label("M",(-1.39,5.32),SE*lsf); label("I",(-1.34,4.93),SE*lsf); label("L",(-1.36,4.51),SE*lsf); label("E",(-1.37,4.11),SE*lsf); label("S",(-1.39,3.7),SE*lsf);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); [/asy]
<spanclass=latexbold>(A)</span>2<spanclass=latexbold>(B)</span>2.5<spanclass=latexbold>(C)</span>4<spanclass=latexbold>(D)</span>4.5<spanclass=latexbold>(E)</span>5 <span class='latex-bold'>(A)</span>2\qquad<span class='latex-bold'>(B)</span>2.5\qquad<span class='latex-bold'>(C)</span>4\qquad<span class='latex-bold'>(D)</span>4.5\qquad<span class='latex-bold'>(E)</span>5
7
1

2011 AMC 8 - Problem 7 - The bolded part

Each of the following four large congruent squares is subdivided into combinations of congruent triangles or rectangles and is partially bolded. What percent of the total area is partially bolded?
[asy] import graph; size(7.01cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-0.42,xmax=14.59,ymin=-10.08,ymax=5.26; pair A=(0,0), B=(4,0), C=(0,4), D=(4,4), F=(2,0), G=(3,0), H=(1,4), I=(2,4), J=(3,4), K=(0,-2), L=(4,-2), M=(0,-6), O=(0,-4), P=(4,-4), Q=(2,-2), R=(2,-6), T=(6,4), U=(10,0), V=(10,4), Z=(10,2), A_1=(8,4), B_1=(8,0), C_1=(6,-2), D_1=(10,-2), E_1=(6,-6), F_1=(10,-6), G_1=(6,-4), H_1=(10,-4), I_1=(8,-2), J_1=(8,-6), K_1=(8,-4); draw(C--H--(1,0)--A--cycle,linewidth(1.6)); draw(M--O--Q--R--cycle,linewidth(1.6)); draw(A_1--V--Z--cycle,linewidth(1.6)); draw(G_1--K_1--J_1--E_1--cycle,linewidth(1.6)); draw(C--D); draw(D--B); draw(B--A); draw(A--C); draw(H--(1,0)); draw(I--F); draw(J--G); draw(C--H,linewidth(1.6)); draw(H--(1,0),linewidth(1.6)); draw((1,0)--A,linewidth(1.6)); draw(A--C,linewidth(1.6)); draw(K--L); draw((4,-6)--L); draw((4,-6)--M); draw(M--K); draw(O--P); draw(Q--R); draw(O--Q); draw(M--O,linewidth(1.6)); draw(O--Q,linewidth(1.6)); draw(Q--R,linewidth(1.6)); draw(R--M,linewidth(1.6)); draw(T--V); draw(V--U); draw(U--(6,0)); draw((6,0)--T); draw((6,2)--Z); draw(A_1--B_1); draw(A_1--Z); draw(A_1--V,linewidth(1.6)); draw(V--Z,linewidth(1.6)); draw(Z--A_1,linewidth(1.6)); draw(C_1--D_1); draw(D_1--F_1); draw(F_1--E_1); draw(E_1--C_1); draw(G_1--H_1); draw(I_1--J_1); draw(G_1--K_1,linewidth(1.6)); draw(K_1--J_1,linewidth(1.6)); draw(J_1--E_1,linewidth(1.6)); draw(E_1--G_1,linewidth(1.6)); dot(A,linewidth(1pt)+ds); dot(B,linewidth(1pt)+ds); dot(C,linewidth(1pt)+ds); dot(D,linewidth(1pt)+ds); dot((1,0),linewidth(1pt)+ds); dot(F,linewidth(1pt)+ds); dot(G,linewidth(1pt)+ds); dot(H,linewidth(1pt)+ds); dot(I,linewidth(1pt)+ds); dot(J,linewidth(1pt)+ds); dot(K,linewidth(1pt)+ds); dot(L,linewidth(1pt)+ds); dot(M,linewidth(1pt)+ds); dot((4,-6),linewidth(1pt)+ds); dot(O,linewidth(1pt)+ds); dot(P,linewidth(1pt)+ds); dot(Q,linewidth(1pt)+ds); dot(R,linewidth(1pt)+ds); dot((6,0),linewidth(1pt)+ds); dot(T,linewidth(1pt)+ds); dot(U,linewidth(1pt)+ds); dot(V,linewidth(1pt)+ds); dot((6,2),linewidth(1pt)+ds); dot(Z,linewidth(1pt)+ds); dot(A_1,linewidth(1pt)+ds); dot(B_1,linewidth(1pt)+ds); dot(C_1,linewidth(1pt)+ds); dot(D_1,linewidth(1pt)+ds); dot(E_1,linewidth(1pt)+ds); dot(F_1,linewidth(1pt)+ds); dot(G_1,linewidth(1pt)+ds); dot(H_1,linewidth(1pt)+ds); dot(I_1,linewidth(1pt)+ds); dot(J_1,linewidth(1pt)+ds); dot(K_1,linewidth(1pt)+ds); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); [/asy]
<spanclass=latexbold>(A)</span>1212<spanclass=latexbold>(B)</span>20<spanclass=latexbold>(C)</span>25<spanclass=latexbold>(D)</span>3313<spanclass=latexbold>(E)</span>3712 <span class='latex-bold'>(A)</span>12\frac 12\qquad<span class='latex-bold'>(B)</span>20\qquad<span class='latex-bold'>(C)</span>25\qquad<span class='latex-bold'>(D)</span>33 \frac 13\qquad<span class='latex-bold'>(E)</span>37\frac 12

Problem 11- 2011 AMC 8

The graph shows the number of minutes studied by both Asha (black bar) and Sasha (grey bar) in one week. On the average, how many more minutes per day did Sasha study than Asha?
[asy] size(300); real i; defaultpen(linewidth(0.8)); draw((0,140)--origin--(220,0)); for(i=1;i<13;i=i+1) { draw((0,10*i)--(220,10*i)); } label("00",origin,W); label("2020",(0,20),W); label("4040",(0,40),W); label("6060",(0,60),W); label("8080",(0,80),W); label("100100",(0,100),W); label("120120",(0,120),W); path MonD=(20,0)--(20,60)--(30,60)--(30,0)--cycle,MonL=(30,0)--(30,70)--(40,70)--(40,0)--cycle,TuesD=(60,0)--(60,90)--(70,90)--(70,0)--cycle,TuesL=(70,0)--(70,80)--(80,80)--(80,0)--cycle,WedD=(100,0)--(100,100)--(110,100)--(110,0)--cycle,WedL=(110,0)--(110,120)--(120,120)--(120,0)--cycle,ThurD=(140,0)--(140,80)--(150,80)--(150,0)--cycle,ThurL=(150,0)--(150,110)--(160,110)--(160,0)--cycle,FriD=(180,0)--(180,70)--(190,70)--(190,0)--cycle,FriL=(190,0)--(190,50)--(200,50)--(200,0)--cycle; fill(MonD,grey); fill(MonL,lightgrey); fill(TuesD,grey); fill(TuesL,lightgrey); fill(WedD,grey); fill(WedL,lightgrey); fill(ThurD,grey); fill(ThurL,lightgrey); fill(FriD,grey); fill(FriL,lightgrey); draw(MonD^^MonL^^TuesD^^TuesL^^WedD^^WedL^^ThurD^^ThurL^^FriD^^FriL); label("M",(30,-5),S); label("Tu",(70,-5),S); label("W",(110,-5),S); label("Th",(150,-5),S); label("F",(190,-5),S); label("M",(-25,85),W); label("I",(-27,75),W); label("N",(-25,65),W); label("U",(-25,55),W); label("T",(-25,45),W); label("E",(-25,35),W); label("S",(-26,25),W);[/asy]
<spanclass=latexbold>(A)</span> 6<spanclass=latexbold>(B)</span> 8<spanclass=latexbold>(C)</span> 9<spanclass=latexbold>(D)</span> 10<spanclass=latexbold>(E)</span> 12 <span class='latex-bold'>(A)</span>\ 6\qquad<span class='latex-bold'>(B)</span>\ 8\qquad<span class='latex-bold'>(C)</span>\ 9\qquad<span class='latex-bold'>(D)</span>\ 10\qquad<span class='latex-bold'>(E)</span>\ 12