Subcontests
(25)Patterns
How many different patterns can be made by shading exactly two of the nine squares? Patterns that can be matched by flips and/or turns are not considered different. For example, the patterns shown below are not considered different.[asy]
fill((0,2)--(1,2)--(1,3)--(0,3)--cycle,gray); fill((1,2)--(2,2)--(2,3)--(1,3)--cycle,gray);
draw((0,0)--(3,0)--(3,3)--(0,3)--cycle,linewidth(1));
draw((2,0)--(2,3),linewidth(1)); draw((0,1)--(3,1),linewidth(1));
draw((1,0)--(1,3),linewidth(1)); draw((0,2)--(3,2),linewidth(1));
fill((6,0)--(8,0)--(8,1)--(6,1)--cycle,gray);
draw((6,0)--(9,0)--(9,3)--(6,3)--cycle,linewidth(1));
draw((8,0)--(8,3),linewidth(1)); draw((6,1)--(9,1),linewidth(1));
draw((7,0)--(7,3),linewidth(1)); draw((6,2)--(9,2),linewidth(1));
fill((14,1)--(15,1)--(15,3)--(14,3)--cycle,gray);
draw((12,0)--(15,0)--(15,3)--(12,3)--cycle,linewidth(1));
draw((14,0)--(14,3),linewidth(1)); draw((12,1)--(15,1),linewidth(1));
draw((13,0)--(13,3),linewidth(1)); draw((12,2)--(15,2),linewidth(1));
fill((18,1)--(19,1)--(19,3)--(18,3)--cycle,gray);
draw((18,0)--(21,0)--(21,3)--(18,3)--cycle,linewidth(1));
draw((20,0)--(20,3),linewidth(1)); draw((18,1)--(21,1),linewidth(1));
draw((19,0)--(19,3),linewidth(1)); draw((18,2)--(21,2),linewidth(1));[/asy](A) 3(B) 6(C) 8(D) 12(E) 18 A Lot of Symbols
Three Δ's and a ♢ will balance nine ∙'s. One Δ will balance a ♢ and a ∙.
[asy]
unitsize(5.5);
fill((0,0)--(-4,-2)--(4,-2)--cycle,black);
draw((-12,2)--(-12,0)--(12,0)--(12,2));
draw(ellipse((-12,5),8,3)); draw(ellipse((12,5),8,3));
label("ΔΔΔ♢",(-12,6.5),S);
label("∙∙∙∙",(12,5.2),N);
label("∙∙∙∙∙",(12,5.2),S);
fill((44,0)--(40,-2)--(48,-2)--cycle,black);
draw((34,2)--(34,0)--(54,0)--(54,2));
draw(ellipse((34,5),6,3)); draw(ellipse((54,5),6,3));
label("Δ",(34,6.5),S);
label("∙♢",(54,6.5),S);[/asy]How many ∙'s will balance the two ♢'s in this balance?
[asy]
unitsize(5.5);
fill((0,0)--(-4,-2)--(4,-2)--cycle,black);
draw((-12,4)--(-12,2)--(12,-2)--(12,0));
draw(ellipse((-12,7),6.5,3)); draw(ellipse((12,3),6.5,3));
label("?",(-12,8.5),S);
label("♢♢",(12,4.5),S);[/asy](A) 1(B) 2(C) 3(D) 4(E) 5 Trip Graph
The graph relates the distance traveled [in miles] to the time elapsed [in hours] on a trip taken by an experimental airplane. During which hour was the average speed of this airplane the largest?[asy]
unitsize(12);
for(int a=1; a<13; ++a)
{
draw((2a,-1)--(2a,1));
}
draw((-1,4)--(1,4)); draw((-1,8)--(1,8)); draw((-1,12)--(1,12)); draw((-1,16)--(1,16));
draw((0,0)--(0,17));
draw((-5,0)--(33,0));
label("0",(0,-1),S); label("1",(2,-1),S); label("2",(4,-1),S); label("3",(6,-1),S);
label("4",(8,-1),S); label("5",(10,-1),S); label("6",(12,-1),S); label("7",(14,-1),S);
label("8",(16,-1),S); label("9",(18,-1),S); label("10",(20,-1),S);
label("11",(22,-1),S); label("12",(24,-1),S);
label("Time in hours",(11,-2),S);
label("500",(-1,4),W); label("1000",(-1,8),W); label("1500",(-1,12),W);
label("2000",(-1,16),W);
label(rotate(90)*"Distance traveled in miles",(-4,10),W);
draw((0,0)--(2,3)--(4,7.2)--(6,8.5));
draw((6,8.5)--(16,12.5)--(18,14)--(24,15));[/asy](A) first (0-1)(B) second (1-2)(C) third (2-3)(D) ninth (8-9)(E) last (11-12) List Of Numbers
A list of 8 numbers is formed by beginning with two given numbers. Each new number in the list is the product of the two previous numbers. Find the first number if the last three are shown:
?,,,,,16,64,1024(A) 641(B) 41(C) 1(D) 2(E) 4 Rectangular Prism
Each corner of a rectangular prism is cut off. Two (of the eight) cuts are shown. How many edges does the new figure have?
[asy]
draw((0,0)--(3,0)--(3,3)--(0,3)--cycle);
draw((3,0)--(5,2)--(5,5)--(2,5)--(0,3));
draw((3,3)--(5,5));
draw((2,0)--(3,1.8)--(4,1)--cycle,linewidth(1));
draw((2,3)--(4,4)--(3,2)--cycle,linewidth(1));[/asy](A) 24(B) 30(C) 36(D) 42(E) 48Assume that the planes cutting the prism do not intersect anywhere in or on the prism. Perimeter Of Figure
The area of this figure is 100 cm2. Its perimeter is
[asy]
draw((0,2)--(2,2)--(2,1)--(3,1)--(3,0)--(1,0)--(1,1)--(0,1)--cycle,linewidth(1));
draw((1,2)--(1,1)--(2,1)--(2,0),dashed);[/asy](A) 20 cm(B) 25 cm(C) 30 cm(D) 40 cm(E) 50 cm Faces Of Cube
The numbers on the faces of this cube are consecutive whole numbers. The sums of the two numbers on each of the three pairs of opposite faces are equal. The sum of the six numbers on this cube is[asy]
draw((0,0)--(3,0)--(3,3)--(0,3)--cycle);
draw((3,0)--(5,2)--(5,5)--(2,5)--(0,3));
draw((3,3)--(5,5));
label("15",(1.5,1.2),N); label("11",(4,2.3),N); label("14",(2.5,3.7),N);[/asy](A) 75(B) 76(C) 78(D) 80(E) 81 Calender
On this monthly calendar, the date behind one of the letters is added to the date behind C. If this sum equals the sum of the dates behind A and B, then the letter is[asy]
unitsize(12);
draw((1,1)--(23,1));
draw((0,5)--(23,5));
draw((0,9)--(23,9));
draw((0,13)--(23,13));
for(int a=0; a<6; ++a)
{
draw((4a+2,0)--(4a+2,14));
}
label("Tues.",(4,14),N); label("Wed.",(8,14),N); label("Thurs.",(12,14),N);
label("Fri.",(16,14),N); label("Sat.",(20,14),N);
label("C",(12,10.3),N); label("<spanclass=′latex−bold′>A</span>",(16,10.3),N); label("Q",(12,6.3),N);
label("S",(4,2.3),N); label("<spanclass=′latex−bold′>B</span>",(8,2.3),N); label("P",(12,2.3),N);
label("T",(16,2.3),N); label("R",(20,2.3),N);[/asy](A) P(B) Q(C) R(D) S(E) T Grades
The grading scale shown is used at Jones Junior High. The fifteen scores in Mr. Freeman's class were:
\begin{tabular}[t]{lllllllll}89, & 72, & 54, & 97, & 77, & 92, & 85, & 74, & 75,\\ 63, & 84, & 78, & 71, & 80, & 90. & & &\\ \end{tabular}
In Mr. Freeman's class, what percent of the students received a grade of C? \boxed{\begin{tabular}[t]{cc}A: & 93-100\\ B: & 85-92\\ C: & 75-84\\ D: & 70-74\\ F: & 0-69\end{tabular}} (A) 20%(B) 25%(C) 30%(D) 3331%(E) 40% Largest Possible Product
When three different numbers from the set {−3,−2,−1,4,5} are multiplied, the largest possible product is(A) 10(B) 20(C) 30(D) 40(E) 60 Fraction Shaded
What fraction of the square is shaded?[asy]
draw((0,0)--(0,3)--(3,3)--(3,0)--cycle);
draw((0,2)--(2,2)--(2,0)); draw((0,1)--(1,1)--(1,0)); draw((0,0)--(3,3));
fill((0,0)--(0,1)--(1,1)--cycle,grey);
fill((1,0)--(1,1)--(2,2)--(2,0)--cycle,grey);
fill((0,2)--(2,2)--(3,3)--(0,3)--cycle,grey);[/asy](A) 31(B) 52(C) 125(D) 73(E) 21 Find The Sum
What is the smallest sum of two 3-digit numbers that can be obtained by placing each of the six digits 4,5,6,7,8,9 in one of the six boxes in this addition problem?[asy]
unitsize(12);
draw((0,0)--(10,0)); draw((-1.5,1.5)--(-1.5,2.5)); draw((-1,2)--(-2,2));
draw((1,1)--(3,1)--(3,3)--(1,3)--cycle); draw((1,4)--(3,4)--(3,6)--(1,6)--cycle);
draw((4,1)--(6,1)--(6,3)--(4,3)--cycle); draw((4,4)--(6,4)--(6,6)--(4,6)--cycle);
draw((7,1)--(9,1)--(9,3)--(7,3)--cycle); draw((7,4)--(9,4)--(9,6)--(7,6)--cycle);[/asy](A) 947(B) 1037(C) 1047(D) 1056(E) 1245