MathDB

Problems(2)

Floors and Fractionals

Source: 2020 AMC 12A #25

1/31/2020
The number a=pqa = \tfrac{p}{q}, where pp and qq are relatively prime positive integers, has the property that the sum of all real numbers xx satisfying x{x}=ax2\lfloor x \rfloor \cdot \{x\} = a \cdot x^2 is 420420, where x\lfloor x \rfloor denotes the greatest integer less than or equal to xx and {x}=xx\{x\} = x - \lfloor x \rfloor denotes the fractional part of xx. What is p+q?p + q?
<spanclass=latexbold>(A)</span>245<spanclass=latexbold>(B)</span>593<spanclass=latexbold>(C)</span>929<spanclass=latexbold>(D)</span>1331<spanclass=latexbold>(E)</span>1332<span class='latex-bold'>(A) </span> 245 \qquad <span class='latex-bold'>(B) </span> 593 \qquad <span class='latex-bold'>(C) </span> 929 \qquad <span class='latex-bold'>(D) </span> 1331 \qquad <span class='latex-bold'>(E) </span> 1332
AMCAMC 122020 AMC 12A2020 AMCAMC 12 Arelatively primenumber theory
Trig Probability

Source: 2020 AMC 12B #25

2/6/2020
For each real number aa with 0a10 \leq a \leq 1, let numbers xx and yy be chosen independently at random from the intervals [0,a][0, a] and [0,1][0, 1], respectively, and let P(a)P(a) be the probability that sin2(πx)+sin2(πy)>1.\sin^2{(\pi x)} + \sin^2{(\pi y)} > 1. What is the maximum value of P(a)?P(a)?
<spanclass=latexbold>(A)</span> 712<spanclass=latexbold>(B)</span> 22<spanclass=latexbold>(C)</span> 1+24<spanclass=latexbold>(D)</span> 512<spanclass=latexbold>(E)</span> 58<span class='latex-bold'>(A)</span>\ \frac{7}{12} \qquad<span class='latex-bold'>(B)</span>\ 2 - \sqrt{2} \qquad<span class='latex-bold'>(C)</span>\ \frac{1+\sqrt{2}}{4} \qquad<span class='latex-bold'>(D)</span>\ \frac{\sqrt{5}-1}{2} \qquad<span class='latex-bold'>(E)</span>\ \frac{5}{8}
trigonometryAMCAMC 12AMC 12 Bprobability2020 AMC 12B2020 AMC