MathDB

Problems(2)

Solving for the Log

Source: 2017 AMC 12A #20

2/8/2017
How many ordered pairs (a,b)(a, b) such that aa is a real positive number and bb is an integer between 22 and 200200, inclusive, satisfy the equation (logba)2017=logb(a2017)(\log_b a)^{2017} = \log_b (a^{2017})?
<spanclass=latexbold>(A) </span>198<spanclass=latexbold>(B) </span>199<spanclass=latexbold>(C) </span>398<spanclass=latexbold>(D) </span>399<spanclass=latexbold>(E) </span>597 <span class='latex-bold'>(A) \ </span>198\qquad <span class='latex-bold'>(B) \ </span> 199 \qquad <span class='latex-bold'>(C) \ </span> 398 \qquad <span class='latex-bold'>(D) \ </span>399\qquad <span class='latex-bold'>(E) \ </span> 597
AMCAMC 12AMC 12 A2017 AMC 12A
A Proof Without Words

Source: 2017 AMC 12B #20

2/16/2017
Real numbers xx and yy are chosen independently and uniformly at random from the interval (0,1)(0,1). What is the probability that log2x=log2y\lfloor \log_2{x} \rfloor=\lfloor \log_2{y} \rfloor, where r\lfloor r \rfloor denotes the greatest integer less than or equal to the real number rr?
<spanclass=latexbold>(A)</span> 18<spanclass=latexbold>(B)</span> 16<spanclass=latexbold>(C)</span> 14<spanclass=latexbold>(D)</span> 13<spanclass=latexbold>(E)</span> 12<span class='latex-bold'>(A)</span>\ \frac{1}{8}\qquad<span class='latex-bold'>(B)</span>\ \frac{1}{6}\qquad<span class='latex-bold'>(C)</span>\ \frac{1}{4}\qquad<span class='latex-bold'>(D)</span>\ \frac{1}{3}\qquad<span class='latex-bold'>(E)</span>\ \frac{1}{2}
AMCAMC 12AMC 12 Bfloor function2017 AMC 12B