MathDB

Problems(2)

Just an average sequence

Source: AMC 12 A 2006 #23

2/5/2006
Given a finite sequence S \equal{} (a_1,a_2,\ldots,a_n) of n n real numbers, let A(S) A(S) be the sequence \left(\frac {a_1 \plus{} a_2}2,\frac {a_2 \plus{} a_3}2,\ldots,\frac {a_{n \minus{} 1} \plus{} a_n}2\right) of n \minus{} 1 real numbers. Define A^1(S) \equal{} A(S) and, for each integer m m, 2\le m\le n \minus{} 1, define A^m(S) \equal{} A(A^{m \minus{} 1}(S)). Suppose x>0 x > 0, and let S \equal{} (1,x,x^2,\ldots,x^{100}). If A^{100}(S) \equal{} (1/2^{50}), then what is x x? (A) 1 \minus{} \frac {\sqrt {2}}2\qquad (B) \sqrt {2} \minus{} 1\qquad (C) \frac 12\qquad (D) 2 \minus{} \sqrt {2}\qquad (E) \frac {\sqrt {2}}2
inductionPascal's TriangleAMC
Point Inside a Triangle

Source: AMC 12 2006B, Problem 23

2/17/2006
Isosceles ABC \triangle ABC has a right angle at C C. Point P P is inside ABC \triangle ABC, such that PA \equal{} 11, PB \equal{} 7, and PC \equal{} 6. Legs AC \overline{AC} and BC \overline{BC} have length s \equal{} \sqrt {a \plus{} b\sqrt {2}}, where a a and b b are positive integers. What is a \plus{} b?
[asy]pointpen = black; pathpen = linewidth(0.7); pen f = fontsize(10); size(5cm); pair B = (0,sqrt(85+42*sqrt(2))); pair A = (B.y,0); pair C = (0,0); pair P = IP(arc(B,7,180,360),arc(C,6,0,90)); D(A--B--C--cycle); D(P--A); D(P--B); D(P--C); MP("A",D(A),plain.E,f); MP("B",D(B),plain.N,f); MP("C",D(C),plain.SW,f); MP("P",D(P),plain.NE,f);[/asy]
<spanclass=latexbold>(A)</span>85<spanclass=latexbold>(B)</span>91<spanclass=latexbold>(C)</span>108<spanclass=latexbold>(D)</span>121<spanclass=latexbold>(E)</span>127 <span class='latex-bold'>(A) </span> 85 \qquad <span class='latex-bold'>(B) </span> 91 \qquad <span class='latex-bold'>(C) </span> 108 \qquad <span class='latex-bold'>(D) </span> 121 \qquad <span class='latex-bold'>(E) </span> 127
rotationgeometrygeometric transformationdilationtrigonometryAMCAIME