MathDB

Problems(2)

Square and Equilateral Triangle

Source:

2/17/2008
A square and an equilateral triangle have the same perimeter. Let A A be the area of the circle circumscribed about the square and B B be the area of the circle circumscribed about the triangle. Find A/B A/B. <spanclass=latexbold>(A)</span> 916<spanclass=latexbold>(B)</span> 34<spanclass=latexbold>(C)</span> 2732<spanclass=latexbold>(D)</span> 368<spanclass=latexbold>(E)</span> 1 <span class='latex-bold'>(A)</span>\ \frac{9}{16} \qquad <span class='latex-bold'>(B)</span>\ \frac{3}{4} \qquad <span class='latex-bold'>(C)</span>\ \frac{27}{32} \qquad <span class='latex-bold'>(D)</span>\ \frac{3\sqrt{6}}{8} \qquad <span class='latex-bold'>(E)</span>\ 1
geometryperimeterarea of a triangle
Cassandra's Watch

Source:

1/4/2009
Cassandra sets her watch to the correct time at noon. At the actual time of 1:  ⁣00 PM \text{1: \!\,00 PM}, she notices that her watch reads 12:  ⁣57 \text{12: \!\,57} and 36 36 seconds. Assuming that her watch loses time at a constant rate, what will be the actual time when her watch first reads 10:  ⁣00 PM \text{10: \!\,00 PM}? <spanclass=latexbold>(A)</span> 10:  ⁣22 PM and 24 seconds<spanclass=latexbold>(B)</span> 10:  ⁣24 PM<spanclass=latexbold>(C)</span> 10:  ⁣25 PM <span class='latex-bold'>(A)</span>\ \text{10: \!\,22 PM and 24 seconds} \qquad<span class='latex-bold'>(B)</span>\ \text{10: \!\,24 PM}\qquad<span class='latex-bold'>(C)</span>\ \text{10: \!\,25 PM} <spanclass=latexbold>(D)</span> 10:  ⁣27 PM<spanclass=latexbold>(E)</span> 10:  ⁣30 PM <span class='latex-bold'>(D)</span>\ \text{10: \!\,27 PM}\qquad<span class='latex-bold'>(E)</span>\ \text{10: \!\,30 PM}