A circle centered at O has radius 1 and contains the point A. Segment AB is tangent to the circle at A and \angle{AOB} \equal{} \theta. If point C lies on OA and BC bisects ∠ABO, then OC \equal{}[asy]import olympiad;
unitsize(2cm);
defaultpen(fontsize(8pt)+linewidth(.8pt));
labelmargin=0.2;
dotfactor=3;pair O=(0,0);
pair A=(1,0);
pair B=(1,1.5);
pair D=bisectorpoint(A,B,O);
pair C=extension(B,D,O,A);draw(Circle(O,1));
draw(O--A--B--cycle);
draw(B--C);label("O",O,SW);
dot(O);
label("θ",(0.1,0.05),ENE);dot(C);
label("C",C,S);dot(A);
label("A",A,E);dot(B);
label("B",B,E);[/asy] (A)\ \sec^2\theta \minus{} \tan\theta \qquad (B)\ \frac {1}{2} \qquad (C)\ \frac {\cos^2\theta}{1 \plus{} \sin\theta} \qquad (D)\ \frac {1}{1 \plus{} \sin\theta} \qquad (E)\ \frac {\sin\theta}{\cos^2\theta} trigonometrygeometrytrig identitiesLaw of Sinesangle bisector