MathDB
Problems
Contests
National and Regional Contests
USA Contests
MAA AMC
AMC 12/AHSME
1999 AMC 12/AHSME
25
25
Part of
1999 AMC 12/AHSME
Problems
(1)
Ahsme 1999 #25
Source:
1/30/2006
There are unique integers
a
2
,
a
3
,
a
4
,
a
5
,
a
6
,
a
7
a_2, a_3, a_4, a_5, a_6, a_7
a
2
,
a
3
,
a
4
,
a
5
,
a
6
,
a
7
such that \frac {5}{7} \equal{} \frac {a_2}{2!} \plus{} \frac {a_3}{3!} \plus{} \frac {a_4}{4!} \plus{} \frac {a_5}{5!} \plus{} \frac {a_6}{6!} \plus{} \frac {a_7}{7!}, where
0
≤
a
i
<
i
0 \le a_i < i
0
≤
a
i
<
i
for i \equal{} 2,3...,7. Find a_2 \plus{} a_3 \plus{} a_4 \plus{} a_5 \plus{} a_6 \plus{} a_7.
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
8
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
a
n
>
9
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
a
n
>
10
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
a
n
>
11
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
a
n
>
12
<span class='latex-bold'>(A)</span>\ 8 \qquad <span class='latex-bold'>(B)</span>\ 9 \qquad <span class='latex-bold'>(C)</span>\ 10 \qquad <span class='latex-bold'>(D)</span>\ 11 \qquad <span class='latex-bold'>(E)</span>\ 12
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
8
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
an
>
9
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
an
>
10
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
an
>
11
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
an
>
12
factorial