MathDB
Problems
Contests
National and Regional Contests
USA Contests
MAA AMC
AMC 12/AHSME
1985 AMC 12/AHSME
3
3
Part of
1985 AMC 12/AHSME
Problems
(1)
Finding the Length between Two Circular Arcs
Source:
3/2/2009
In right
△
A
B
C
\triangle ABC
△
A
BC
with legs
5
5
5
and
12
12
12
, arcs of circles are drawn, one with center
A
A
A
and radius
12
12
12
, the other with center
B
B
B
and radius
5
5
5
. They intersect the hypotenuse at
M
M
M
and
N
N
N
. Then,
M
N
MN
MN
has length:[asy]size(200); defaultpen(linewidth(0.7)+fontsize(10)); pair A=origin, B=(12,7), C=(12,0), M=12*dir(A--B), N=B+B.y*dir(B--A); real r=degrees(B); draw(A--B--C--cycle^^Arc(A,12,0,r)^^Arc(B,B.y,180+r,270)); pair point=incenter(A,B,C); label("
A
A
A
", A, dir(point--A)); label("
B
B
B
", B, dir(point--B)); label("
C
C
C
", C, dir(point--C)); label("
M
M
M
", M, dir(point--M)); label("
N
N
N
", N, dir(point--N));label("
12
12
12
", (6,0), S); label("
5
5
5
", (12,3.5), E);[/asy]
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
2
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
a
n
>
13
5
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
a
n
>
3
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
a
n
>
4
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
a
n
>
24
5
<span class='latex-bold'>(A)</span>\ 2 \qquad <span class='latex-bold'>(B)</span>\ \frac {13}{5} \qquad <span class='latex-bold'>(C)</span>\ 3 \qquad <span class='latex-bold'>(D)</span>\ 4 \qquad <span class='latex-bold'>(E)</span>\ \frac {24}{5}
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
2
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
an
>
5
13
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
an
>
3
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
an
>
4
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
an
>
5
24
geometry
incenter