MathDB
Problems
Contests
National and Regional Contests
USA Contests
MAA AMC
AMC 12/AHSME
1985 AMC 12/AHSME
25
25
Part of
1985 AMC 12/AHSME
Problems
(1)
Dimensions of a Rectangular Solid
Source:
3/8/2009
The volume of a certain rectangular solid is
8
cm
3
8 \text{ cm}^3
8
cm
3
, its total surface area is
32
cm
3
32 \text{ cm}^3
32
cm
3
, and its three dimensions are in geometric progression. The sums of the lengths in cm of all the edges of this solid is
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
28
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
a
n
>
32
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
a
n
>
36
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
a
n
>
40
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
a
n
>
44
<span class='latex-bold'>(A)</span>\ 28 \qquad <span class='latex-bold'>(B)</span>\ 32 \qquad <span class='latex-bold'>(C)</span>\ 36 \qquad <span class='latex-bold'>(D)</span>\ 40 \qquad <span class='latex-bold'>(E)</span>\ 44
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
28
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
an
>
32
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
an
>
36
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
an
>
40
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
an
>
44
geometry
ARML