MathDB
Problems
Contests
National and Regional Contests
USA Contests
MAA AMC
AMC 12/AHSME
1985 AMC 12/AHSME
17
17
Part of
1985 AMC 12/AHSME
Problems
(1)
Finding the Area of a Rectangle
Source:
3/3/2009
Diagonal
D
B
DB
D
B
of rectangle
A
B
C
D
ABCD
A
BC
D
is divided into
3
3
3
segments of length
1
1
1
by parallel lines
L
L
L
and
L
′
L'
L
′
that pass through
A
A
A
and
C
C
C
and are perpendicular to
D
B
DB
D
B
. The area of
A
B
C
D
ABCD
A
BC
D
, rounded to the nearest tenth, is[asy]size(200); defaultpen(linewidth(0.7)+fontsize(10)); real x=sqrt(6), y=sqrt(3), a=0.4; pair D=origin, A=(0,y), B=(x,y), C=(x,0), E=foot(C,B,D), F=foot(A,B,D); real r=degrees(B); pair M1=F+3*dir(r)*dir(90), M2=F+3*dir(r)*dir(-90), N1=E+3*dir(r)*dir(90), N2=E+3*dir(r)*dir(-90); markscalefactor=0.02; draw(B--C--D--A--B--D^^M1--M2^^N1--N2^^rightanglemark(A,F,B,6)^^rightanglemark(N1,E,B,6)); pair W=A+a*dir(135), X=B+a*dir(45), Y=C+a*dir(-45), Z=D+a*dir(-135);label("A", A, NE); label("B", B, NE); label("C", C, dir(0)); label("D", D, dir(180)); label("
L
L
L
", (x/2,0), SW); label("
L
′
L^\prime
L
′
", C, SW);label("1", D--F, NW); label("1", F--E, SE); label("1", E--B, SE); clip(W--X--Y--Z--cycle); [/asy]
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
4.1
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
a
n
>
4.2
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
a
n
>
4.3
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
a
n
>
4.4
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
a
n
>
4.5
<span class='latex-bold'>(A)</span>\ 4.1 \qquad <span class='latex-bold'>(B)</span>\ 4.2 \qquad <span class='latex-bold'>(C)</span>\ 4.3 \qquad <span class='latex-bold'>(D)</span>\ 4.4 \qquad <span class='latex-bold'>(E)</span>\ 4.5
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
4.1
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
an
>
4.2
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
an
>
4.3
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
an
>
4.4
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
an
>
4.5
geometry
rectangle
ratio