In the adjoining diagram, BO bisects ∠CBA, CO bisects ∠ACB, and MN is parallel to BC. If AB=12, BC=24, and AC=18, then the perimeter of △AMN is[asy]
size(200);
defaultpen(linewidth(0.7)+fontsize(10));
pair B=origin, C=(24,0), A=intersectionpoints(Circle(B,12), Circle(C,18))[0], O=incenter(A,B,C), M=intersectionpoint(A--B, O--O+40*dir(180)), N=intersectionpoint(A--C, O--O+40*dir(0));
draw(B--M--O--B--C--O--N--C^^N--A--M);
label("A", A, dir(90));
label("B", B, dir(O--B));
label("C", C, dir(O--C));
label("M", M, dir(90)*dir(B--A));
label("N", N, dir(90)*dir(A--C));
label("O", O, dir(90));[/asy](A) 30(B) 33(C) 36(D) 39(E) 42 geometryperimeterincenterinradiusratio