MathDB
Problems
Contests
National and Regional Contests
USA Contests
MAA AMC
AMC 12/AHSME
1965 AMC 12/AHSME
33
33
Part of
1965 AMC 12/AHSME
Problems
(1)
Factorial Problem
Source:
1/11/2009
If the number
15
!
15!
15
!
, that is,
15
⋅
14
⋅
13
…
1
15 \cdot 14 \cdot 13 \dots 1
15
⋅
14
⋅
13
…
1
, ends with
k
k
k
zeros when given to the base
12
12
12
and ends with
h
h
h
zeros when given to the base
10
10
10
, then k \plus{} h equals:
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
5
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
a
n
>
6
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
a
n
>
7
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
a
n
>
8
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
a
n
>
9
<span class='latex-bold'>(A)</span>\ 5 \qquad <span class='latex-bold'>(B)</span>\ 6 \qquad <span class='latex-bold'>(C)</span>\ 7 \qquad <span class='latex-bold'>(D)</span>\ 8 \qquad <span class='latex-bold'>(E)</span>\ 9
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
5
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
an
>
6
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
an
>
7
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
an
>
8
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
an
>
9
factorial