MathDB

Problems(1)

Magnitudes of triangle ABC

Source: 1964 AHSME Problem 39

3/19/2014
The magnitudes of the sides of triangle ABCABC are aa, bb, and cc, as shown, with cbac\le b\le a. Through interior point PP and the vertices AA, BB, CC, lines are drawn meeting the opposite sides in AA', BB', CC', respectively. Let s=AA+BB+CCs=AA'+BB'+CC'. Then, for all positions of point PP, ss is less than:
<spanclass=latexbold>(A)</span>2a+b<spanclass=latexbold>(B)</span>2a+c<spanclass=latexbold>(C)</span>2b+c<spanclass=latexbold>(D)</span>a+2b<spanclass=latexbold>(E)</span><span class='latex-bold'>(A) </span>2a+b\qquad<span class='latex-bold'>(B) </span>2a+c\qquad<span class='latex-bold'>(C) </span>2b+c\qquad<span class='latex-bold'>(D) </span>a+2b\qquad <span class='latex-bold'>(E) </span> a+b+ca+b+c
[asy] import math; defaultpen(fontsize(11pt)); pair A = (0,0), B = (1,3), C = (5,0), P = (1.5,1);
pair X = extension(B,C,A,P), Y = extension(A,C,B,P), Z = extension(A,B,C,P);
draw(A--B--C--cycle); draw(A--X); draw(B--Y); draw(C--Z); dot(P); dot(A); dot(B); dot(C); label("AA",A,dir(210)); label("BB",B,dir(90)); label("CC",C,dir(-30)); label("AA'",X,dir(-100)); label("BB'",Y,dir(65)); label("CC'",Z,dir(20)); label("PP",P,dir(70)); label("aa",X,dir(80)); label("bb",Y,dir(-90)); label("cc",Z,dir(110)); //Credit to bobthesmartypants for the diagram [/asy]
AsymptoteAMC