MathDB
Problems
Contests
National and Regional Contests
USA Contests
MAA AMC
AMC 12/AHSME
1964 AMC 12/AHSME
36
36
Part of
1964 AMC 12/AHSME
Problems
(1)
Permissible positions of a circle
Source: 1964 AHSME Problem 36
3/19/2014
In this figure the radius of the circle is equal to the altitude of the equilateral triangle
A
B
C
ABC
A
BC
. The circle is made to roll along the side
A
B
AB
A
B
, remaining tangent to it at a variable point
T
T
T
and intersecting lines
A
C
AC
A
C
and
B
C
BC
BC
in variable points
M
M
M
and
N
N
N
, respectively. Let
n
n
n
be the number of degrees in arc
M
T
N
MTN
MTN
. Then
n
n
n
, for all permissible positions of the circle:
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
varies from
3
0
∘
to
9
0
∘
<span class='latex-bold'>(A) </span>\text{varies from }30^{\circ}\text{ to }90^{\circ}
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
varies from
3
0
∘
to
9
0
∘
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
a
n
>
varies from
3
0
∘
to
6
0
∘
<span class='latex-bold'>(B) </span>\text{varies from }30^{\circ}\text{ to }60^{\circ}
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
an
>
varies from
3
0
∘
to
6
0
∘
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
a
n
>
varies from
6
0
∘
to
9
0
∘
<span class='latex-bold'>(C) </span>\text{varies from }60^{\circ}\text{ to }90^{\circ}
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
an
>
varies from
6
0
∘
to
9
0
∘
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
a
n
>
remains constant at
3
0
∘
<span class='latex-bold'>(D) </span>\text{remains constant at }30^{\circ}
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
an
>
remains constant at
3
0
∘
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
a
n
>
remains constant at
6
0
∘
<span class='latex-bold'>(E) </span>\text{remains constant at }60^{\circ}
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
an
>
remains constant at
6
0
∘
[asy] pair A = (0,0), B = (1,0), C = dir(60), T = (2/3,0); pair M = intersectionpoint(A--C,Circle((2/3,sqrt(3)/2),sqrt(3)/2)), N = intersectionpoint(B--C,Circle((2/3,sqrt(3)/2),sqrt(3)/2));draw((0,0)--(1,0)--dir(60)--cycle); draw(Circle((2/3,sqrt(3)/2),sqrt(3)/2)); label("
A
A
A
",A,dir(210)); label("
B
B
B
",B,dir(-30)); label("
C
C
C
",C,dir(90)); label("
M
M
M
",M,dir(190)); label("
N
N
N
",N,dir(75)); label("
T
T
T
",T,dir(-90)); //Credit to bobthesmartypants for the diagram [/asy]
probability
AMC