MathDB
Problems
Contests
National and Regional Contests
USA Contests
MAA AMC
AMC 12/AHSME
1957 AMC 12/AHSME
30
30
Part of
1957 AMC 12/AHSME
Problems
(1)
Expression for the Sum of Squares
Source:
6/8/2009
The sum of the squares of the first
n
n
n
positive integers is given by the expression \frac{n(n \plus{} c)(2n \plus{} k)}{6}, if
c
c
c
and
k
k
k
are, respectively:
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
1
and
2
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
a
n
>
3
and
5
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
a
n
>
2
and
2
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
a
n
>
1
and
1
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
a
n
>
2
and
1
<span class='latex-bold'>(A)</span>\ {1}\text{ and }{2} \qquad <span class='latex-bold'>(B)</span>\ {3}\text{ and }{5}\qquad <span class='latex-bold'>(C)</span>\ {2}\text{ and }{2}\qquad <span class='latex-bold'>(D)</span>\ {1}\text{ and }{1}\qquad <span class='latex-bold'>(E)</span>\ {2}\text{ and }{1}
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
1
and
2
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
an
>
3
and
5
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
an
>
2
and
2
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
an
>
1
and
1
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
an
>
2
and
1