MathDB
Problems
Contests
National and Regional Contests
USA Contests
MAA AMC
AMC 12/AHSME
1954 AMC 12/AHSME
6
6
Part of
1954 AMC 12/AHSME
Problems
(1)
Simplifying an Expression
Source:
2/6/2009
The value of \frac{1}{16}a^0\plus{}\left (\frac{1}{16a} \right )^0\minus{} \left (64^{\minus{}\frac{1}{2}} \right )\minus{} (\minus{}32)^{\minus{}\frac{4}{5}} is:
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
1
13
16
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
a
n
>
1
3
16
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
a
n
>
1
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
a
n
>
7
8
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
a
n
>
1
16
<span class='latex-bold'>(A)</span>\ 1 \frac{13}{16} \qquad <span class='latex-bold'>(B)</span>\ 1 \frac{3}{16} \qquad <span class='latex-bold'>(C)</span>\ 1 \qquad <span class='latex-bold'>(D)</span>\ \frac{7}{8} \qquad <span class='latex-bold'>(E)</span>\ \frac{1}{16}
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
1
16
13
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
an
>
1
16
3
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
an
>
1
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
an
>
8
7
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
an
>
16
1