MathDB
Problems
Contests
National and Regional Contests
USA Contests
MAA AMC
AMC 12/AHSME
1954 AMC 12/AHSME
35
35
Part of
1954 AMC 12/AHSME
Problems
(1)
Right Triangle
Source:
2/7/2009
In the right triangle shown the sum of the distances
B
M
BM
BM
and
M
A
MA
M
A
is equal to the sum of the distances
B
C
BC
BC
and
C
A
CA
C
A
. If MB \equal{} x, CB \equal{} h, and CA \equal{} d, then
x
x
x
equals: [asy]size(200); defaultpen(linewidth(.8pt)+fontsize(10pt)); dotfactor=4; draw((0,0)--(8,0)--(0,5)--cycle); label("C",(0,0),SW); label("A",(8,0),SE); label("M",(0,5),N); dot((0,3.5)); label("B",(0,3.5),W); label("
x
x
x
",(0,4.25),W); label("
h
h
h
",(0,1),W); label("
d
d
d
",(4,0),S);[/asy]
(A)
\ \frac {hd}{2h \plus{} d} \qquad
(B)
\ d \minus{} h \qquad
(C)
\ \frac {1}{2}d \qquad
(D)
\ h \plus{} d \minus{} \sqrt {2d} \qquad
(E)
\ \sqrt {h^2 \plus{} d^2} \minus{} h