MathDB

15

Part of 2016 AMC 10

Problems(2)

Circles in circles

Source: Problem #15 2016 AMC 10A

2/3/2016
Seven cookies of radius 11 inch are cut from a circle of cookie dough, as shown. Neighboring cookies are tangent, and all except the center cookie are tangent to the edge of the dough. The leftover scrap is reshaped to form another cookie of the same thickness. What is the radius in inches of the scrap cookie?
[asy] draw(circle((0,0),3)); draw(circle((0,0),1)); draw(circle((1,sqrt(3)),1)); draw(circle((-1,sqrt(3)),1)); draw(circle((-1,-sqrt(3)),1)); draw(circle((1,-sqrt(3)),1)); draw(circle((2,0),1)); draw(circle((-2,0),1)); [/asy]
<spanclass=latexbold>(A)</span>2<spanclass=latexbold>(B)</span>1.5<spanclass=latexbold>(C)</span>π<spanclass=latexbold>(D)</span>2π<spanclass=latexbold>(E)</span>π<span class='latex-bold'>(A) </span> \sqrt{2} \qquad <span class='latex-bold'>(B) </span> 1.5 \qquad <span class='latex-bold'>(C) </span> \sqrt{\pi} \qquad <span class='latex-bold'>(D) </span> \sqrt{2\pi} \qquad <span class='latex-bold'>(E) </span> \pi
AMCAMC 10
3 by 3 Array Of Squares

Source: Problem #15 2016 AMC 10B

2/21/2016
All the numbers 1,2,3,4,5,6,7,8,91, 2, 3, 4, 5, 6, 7, 8, 9 are written in a 3×33\times3 array of squares, one number in each square, in such a way that if two numbers are consecutive then they occupy squares that share an edge. The numbers in the four corners add up to 1818. What is the number in the center?
<spanclass=latexbold>(A)</span> 5<spanclass=latexbold>(B)</span> 6<spanclass=latexbold>(C)</span> 7<spanclass=latexbold>(D)</span> 8<spanclass=latexbold>(E)</span> 9<span class='latex-bold'>(A)</span>\ 5\qquad<span class='latex-bold'>(B)</span>\ 6\qquad<span class='latex-bold'>(C)</span>\ 7\qquad<span class='latex-bold'>(D)</span>\ 8\qquad<span class='latex-bold'>(E)</span>\ 9
AMC10AMCAMC 10AMC 10 B