19
Part of 2003 AMC 10
Problems(2)
Lune
Source:
2/19/2008
A semicircle of diameter sits at the top of a semicircle of diameter , as shown. The shaded area inside the smaller semicircle and outside the larger semicircle is called a lune. Determine the area of this lune.
[asy]unitsize(2.5cm);
defaultpen(fontsize(10pt)+linewidth(.8pt));filldraw(Circle((0,.866),.5),grey,black);
label("1",(0,.866),S);
filldraw(Circle((0,0),1),white,black);
draw((-.5,.866)--(.5,.866),linetype("4 4"));
clip((-1,0)--(1,0)--(1,2)--(-1,2)--cycle);
draw((-1,0)--(1,0));
label("2",(0,0),S);[/asy] (A)\ \frac {1}{6}\pi \minus{} \frac {\sqrt {3}}{4} \qquad (B)\ \frac {\sqrt {3}}{4} \minus{} \frac {1}{12}\pi \qquad (C)\ \frac {\sqrt {3}}{4} \minus{} \frac {1}{24}\pi\qquad(D)\ \frac {\sqrt {3}}{4} \plus{} \frac {1}{24}\pi
(E)\ \frac {\sqrt {3}}{4} \plus{} \frac {1}{12}\pi
geometrycalculusanalytic geometryintegrationLaTeX
Four Semicircles
Source:
1/5/2009
Three semicircles of radius are constructed on diameter of a semicircle of radius . The centers of the small semicircles divide into four line segments of equal length, as shown. What is the area of the shaded region that lies within the large semicircle but outside the smaller semicircles?
[asy]import graph;
unitsize(14mm);
defaultpen(linewidth(.8pt)+fontsize(8pt));
dashed=linetype("4 4");
dotfactor=3;pair A=(-2,0), B=(2,0);fill(Arc((0,0),2,0,180)--cycle,mediumgray);
fill(Arc((-1,0),1,0,180)--cycle,white);
fill(Arc((0,0),1,0,180)--cycle,white);
fill(Arc((1,0),1,0,180)--cycle,white);
draw(Arc((-1,0),1,60,180));
draw(Arc((0,0),1,0,60),dashed);
draw(Arc((0,0),1,60,120));
draw(Arc((0,0),1,120,180),dashed);
draw(Arc((1,0),1,0,120));
draw(Arc((0,0),2,0,180)--cycle);dot((0,0));
dot((-1,0));
dot((1,0));draw((-2,-0.1)--(-2,-0.3),gray);
draw((-1,-0.1)--(-1,-0.3),gray);
draw((1,-0.1)--(1,-0.3),gray);
draw((2,-0.1)--(2,-0.3),gray);label("",A,W);
label("",B,E);
label("1",(-1.5,-0.1),S);
label("2",(0,-0.1),S);
label("1",(1.5,-0.1),S);[/asy] (A)\ \pi\minus{}\sqrt3 \qquad
(B)\ \pi\minus{}\sqrt2 \qquad
(C)\ \frac{\pi\plus{}\sqrt2}{2} \qquad
(D)\ \frac{\pi\plus{}\sqrt3}{2}
(E)\ \frac{7}{6}\pi\minus{}\frac{\sqrt3}{2}
geometrytrigonometry