9
Part of 2013 AIME Problems
Problems(2)
Folded Paper Equilateral Triangle
Source: 2013 AIME I Problem 9
3/15/2013
A paper equilateral triangle has side length . The paper triangle is folded so that vertex touches a point on side a distance from point . The length of the line segment along which the triangle is folded can be written as , where , , and are positive integers, and are relatively prime, and is not divisible by the square of any prime. Find .
[asy]
import cse5;
size(12cm);
pen tpen = defaultpen + 1.337;
real a = 39/5.0;
real b = 39/7.0;
pair B = MP("B", (0,0), dir(200));
pair A = MP("A", (9,0), dir(-80));
pair C = MP("C", (12,0), dir(-20));
pair K = (6,10.392);
pair M = (a*B+(12-a)*K) / 12;
pair N = (b*C+(12-b)*K) / 12;
draw(B--M--N--C--cycle, tpen);
draw(M--A--N--cycle);
fill(M--A--N--cycle, mediumgrey);
pair shift = (-20.13, 0);
pair B1 = MP("B", B+shift, dir(200));
pair A1 = MP("A", K+shift, dir(90));
pair C1 = MP("C", C+shift, dir(-20));
draw(A1--B1--C1--cycle, tpen);[/asy]
Asymptoteanalytic geometrytrigonometrygeometrynumber theoryrelatively primetrig identities
Colorful tilings of a strip of length 7
Source: AIME II 2013, Problem 9
4/4/2013
A board is completely covered by tiles without overlap; each tile may cover any number of consecutive squares, and each tile lies completely on the board. Each tile is either red, blue, or green. Let be the number of tilings of the board in which all three colors are used at least once. For example, a red tile followed by a green tile, a green tile, a blue tile, and a green tile is a valid tiling. Note that if the blue tile is replaced by two blue tiles, this results in a different tiling. Find the remainder when is divided by .
modular arithmeticAMCRecurrencecombinatoricsAIME