4
Part of 2013 AIME Problems
Problems(2)
Not Burnside's Lemma
Source: 2013 AIME I Problem 4
3/15/2013
In the array of squares shown below, squares are colored red, and the remaining squares are colored blue. If one of all possible such colorings is chosen at random, the probability that the chosen colored array appears the same when rotated around the central square is , where is a positive integer. Find .
[asy]
draw((0,0)--(1,0)--(1,1)--(0,1)--(0,0));
draw((2,0)--(2,2)--(3,2)--(3,0)--(3,1)--(2,1)--(4,1)--(4,0)--(2,0));
draw((1,2)--(1,4)--(0,4)--(0,2)--(0,3)--(1,3)--(-1,3)--(-1,2)--(1,2));
draw((-1,1)--(-3,1)--(-3,0)--(-1,0)--(-2,0)--(-2,1)--(-2,-1)--(-1,-1)--(-1,1));
draw((0,-1)--(0,-3)--(1,-3)--(1,-1)--(1,-2)--(0,-2)--(2,-2)--(2,-1)--(0,-1));
size(100);
[/asy]
probabilityrotationAMCAIME
Equilateral triangle at (1,0) and (2,2rt3)
Source: AIME II 2013, Problem 4
4/4/2013
In the Cartesian plane let and . Equilateral triangle is constructed so that lies in the first quadrant. Let be the center of . Then can be written as , where and are relatively prime positive integers and is an integer that is not divisible by the square of any prime. Find .
analytic geometrytrigonometrygeometrygeometric transformationrotationAMCAIME