MathDB

Problems(2)

Trading coins

Source: 2012 AIME I Problem 7

3/16/2012
At each of the sixteen circles in the network below stands a student. A total of 3360 coins are distributed among the sixteen students. All at once, all students give away all their coins by passing an equal number of coins to each of their neighbors in the network. After the trade, all students have the same number of coins as they started with. Find the number of coins the student standing at the center circle had originally.
[asy] import graph;
unitsize(1 cm);
pair[] O;
O[1] = (0,0); O[2] = 0.6*dir(270); O[3] = 0.6*dir(270 + 360/5); O[4] = 0.6*dir(270 + 2*360/5); O[5] = 0.6*dir(270 + 3*360/5); O[6] = 0.6*dir(270 + 4*360/5); O[7] = 1.2*dir(90); O[8] = 1.2*dir(90 + 360/5); O[9] = 1.2*dir(90 + 2*360/5); O[10] = 1.2*dir(90 + 3*360/5); O[11] = 1.2*dir(90 + 4*360/5); O[12] = 2*dir(270); O[13] = 2*dir(270 + 360/5); O[14] = 2*dir(270 + 2*360/5); O[15] = 2*dir(270 + 3*360/5); O[16] = 2*dir(270 + 4*360/5);
draw(O[1]--O[2]); draw(O[1]--O[3]); draw(O[1]--O[4]); draw(O[1]--O[5]); draw(O[1]--O[6]); draw(O[7]--O[5]--O[8]--O[6]--O[9]--O[2]--O[10]--O[3]--O[11]--O[4]--cycle); draw(O[12]--O[10]--O[13]--O[11]--O[14]--O[7]--O[15]--O[8]--O[16]--O[9]--cycle); draw(O[12]--O[13]--O[14]--O[15]--O[16]--cycle);
for(int i = 1; i <= 16; ++i) { filldraw(Circle(O,0.2),white,black); } [/asy]
AMC
Eight-One Binary Sequences

Source: 2012 AIME II Problem 7

3/29/2012
Let SS be the increasing sequence of positive integers whose binary representation has exactly 88 ones. Let NN be the 1000th1000^{th} number in SS. Find the remainder when NN is divided by 10001000.
AMCAIME