7
Part of 2012 AIME Problems
Problems(2)
Trading coins
Source: 2012 AIME I Problem 7
3/16/2012
At each of the sixteen circles in the network below stands a student. A total of 3360 coins are distributed among the sixteen students. All at once, all students give away all their coins by passing an equal number of coins to each of their neighbors in the network. After the trade, all students have the same number of coins as they started with. Find the number of coins the student standing at the center circle had originally.[asy]
import graph;unitsize(1 cm);pair[] O;O[1] = (0,0);
O[2] = 0.6*dir(270);
O[3] = 0.6*dir(270 + 360/5);
O[4] = 0.6*dir(270 + 2*360/5);
O[5] = 0.6*dir(270 + 3*360/5);
O[6] = 0.6*dir(270 + 4*360/5);
O[7] = 1.2*dir(90);
O[8] = 1.2*dir(90 + 360/5);
O[9] = 1.2*dir(90 + 2*360/5);
O[10] = 1.2*dir(90 + 3*360/5);
O[11] = 1.2*dir(90 + 4*360/5);
O[12] = 2*dir(270);
O[13] = 2*dir(270 + 360/5);
O[14] = 2*dir(270 + 2*360/5);
O[15] = 2*dir(270 + 3*360/5);
O[16] = 2*dir(270 + 4*360/5);draw(O[1]--O[2]);
draw(O[1]--O[3]);
draw(O[1]--O[4]);
draw(O[1]--O[5]);
draw(O[1]--O[6]);
draw(O[7]--O[5]--O[8]--O[6]--O[9]--O[2]--O[10]--O[3]--O[11]--O[4]--cycle);
draw(O[12]--O[10]--O[13]--O[11]--O[14]--O[7]--O[15]--O[8]--O[16]--O[9]--cycle);
draw(O[12]--O[13]--O[14]--O[15]--O[16]--cycle);for(int i = 1; i <= 16; ++i) {
filldraw(Circle(O,0.2),white,black);
}
[/asy]
AMC
Eight-One Binary Sequences
Source: 2012 AIME II Problem 7
3/29/2012
Let be the increasing sequence of positive integers whose binary representation has exactly ones. Let be the number in . Find the remainder when is divided by .
AMCAIME