7
Part of 2009 AIME Problems
Problems(2)
Sequence
Source: 2009 AIME I #7
3/18/2009
The sequence satisfies a_1 \equal{} 1 and \displaystyle 5^{(a_{n\plus{}1}\minus{}a_n)} \minus{} 1 \equal{} \frac{1}{n\plus{}\frac{2}{3}} for . Let be the least integer greater than for which is an integer. Find .
logarithmsinductioninvariantAMC
Odd/Even Factorial Division
Source: AIME 2009II Problem 7
4/2/2009
Define to be n(n\minus{}2)(n\minus{}4)\ldots3\cdot1 for odd and n(n\minus{}2)(n\minus{}4)\ldots4\cdot2 for even. When \displaystyle \sum_{i\equal{}1}^{2009} \frac{(2i\minus{}1)!!}{(2i)!!} is expressed as a fraction in lowest terms, its denominator is with odd. Find .
factorialAMCAIMEfloor functionfunction