2
Part of 2009 AIME Problems
Problems(2)
Complex Fraction
Source: AIME 2009I Problem 2
3/18/2009
There is a complex number with imaginary part and a positive integer such that
\frac {z}{z \plus{} n} \equal{} 4i.
Find .
AMCAIMEanalytic geometryrotationcomplex numbersgeometrysimilar triangles
Logarithm Exponents
Source: AIME 2009II Problem 2
4/2/2009
Suppose that , , and are positive real numbers such that a^{\log_3 7} \equal{} 27, b^{\log_7 11} \equal{} 49, and c^{\log_{11} 25} \equal{} \sqrt {11}. Find
a^{(\log_3 7)^2} \plus{} b^{(\log_7 11)^2} \plus{} c^{(\log_{11} 25)^2}.
logarithmsAIMEalgebra