8
Part of 2006 AIME Problems
Problems(2)
Everybody's favorite...
Source: 2006 AIME a Problem 8
3/9/2006
Hexagon is divided into four rhombuses, and as shown. Rhombuses and are congruent, and each has area . Let be the area of rhombus . Given that is a positive integer, find the number of possible values for .[asy]
size(150);defaultpen(linewidth(0.7)+fontsize(10));
draw(rotate(45)*polygon(4));
pair F=(1+sqrt(2))*dir(180), C=(1+sqrt(2))*dir(0), A=F+sqrt(2)*dir(45), E=F+sqrt(2)*dir(-45), B=C+sqrt(2)*dir(180-45), D=C+sqrt(2)*dir(45-180);
draw(F--(-1,0)^^C--(1,0)^^A--B--C--D--E--F--cycle);
pair point=origin;
label("", A, dir(point--A));
label("", B, dir(point--B));
label("", C, dir(point--C));
label("", D, dir(point--D));
label("", E, dir(point--E));
label("", F, dir(point--F));
label("", intersectionpoint( A--(-1,0), F--(0,1) ));
label("", intersectionpoint( E--(-1,0), F--(0,-1) ));
label("", intersectionpoint( D--(1,0), C--(0,-1) ));
label("", intersectionpoint( B--(1,0), C--(0,1) ));
label("", point);
dot(A^^B^^C^^D^^E^^F);[/asy]
geometryrhombustrigonometrygeometric transformationrotationsymmetryfloor function
Triangle confetti!
Source: 2006 AIME II 8
3/28/2006
There is an unlimited supply of congruent equilateral triangles made of colored paper. Each triangle is a solid color with the same color on both sides of the paper. A large equilateral triangle is constructed from four of these paper triangles. Two large triangles are considered distinguishable if it is not possible to place one on the other, using translations, rotations, and/or reflections, so that their corresponding small triangles are of the same color.
Given that there are six different colors of triangles from which to choose, how many distinguishable large equilateral triangles may be formed?
countingdistinguishabilitygeometrygeometric transformationrotationreflectionAMC